
MIN-Fakultät
Fachbereich Informatik

Arbeitsbereich SAV/BV (KOGS)

Image	Processing	1	(IP1)	
Bildverarbeitung	1	

Lecture	2	–	Image	Processing	with	Python	
	

Winter	Semester	2015/16	
	

Benjamin	Seppke	

Outline	

l  IntroducGon	
l  PresenGng	the	Python	programming	language	
l  Image	processing	with	NumPy	and	SciPy	
l  VisualizaGon	with	matplotlib	and	the	spyder	IDE	
l  Summary	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	

15.10.15 University of Hamburg, Dept. Informatics 2

Outline	

l  IntroducGon	
l  PresenGng	the	Python	programming	language	
l  Image	processing	with	NumPy	and	SciPy	
l  VisualizaGon	with	matplotlib	and	the	spyder	IDE	
l  Summary	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 3

Prerequisites	(So0ware)	

l  Python	(we	use	version	2.X	with	X>5)	
l  hPp://www.python.org	

l  NumPy	and	SciPy	(with	PIL:	hPp://www.pythonware.com/products/pil)	
l  hPp://www.scipy.org	

l  matplotlib	
l  hPp://matplotlib.org	

l  spyder	IDE	
l  hPp://code.google.com/p/spyderlib	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 4

Installing	Python	and	packages	

l  Linux	
l  All	of	the	prerequisites	should	be	installable	by	means	of	the	package	manager	

of	the	distribuGon	of	your	choice.	

l  Mac	OS	X	
l  Install	the	MacPorts	package	manager	(hPp://www.macports.org)	and	use	this	

to	get	all	necessary	packages.	

l  Windows	
l  Python-(x,y)	(hPp://code.google.com/p/pythonxy)	contains	all	necessary	

packages	in	binary	form	and	an	installer.	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 5

Goals	for	today...	

l  Draw	interest	to	another	programming	language,	
namely:	Python	

l  MoGvaGon	of	an	interacGve	Workflow	
(„Spielwiese“)	

l  „Easy	access”	into	pracGcal	image	processing	tasks	
using	NumPy,	SciPy,	matplotlib	and	spyder	

l  Finally:	Give	you	the	ability	to	solve	the	exercises	of	
this	course	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 6

Outline	

l  IntroducGon	
l  PresenGng	the	Python	programming	language	
l  Image	processing	with	NumPy	and	SciPy	
l  VisualizaGon	with	matplotlib	and	the	spyder	IDE	
l  Summary	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 7

Introducing	Python	

The	following	introducGon	is	based	on	the	official	
„Python-Tutorial“	

hPp://docs.python.org/tutorial/index.html	
	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 8

Python	
„Python	is	an	easy	to	learn,	powerful	programming	language.	[...]	

Python’s	elegant	syntax	and	dynamic	typing,	together	with	its	
interpreted	nature,	make	it	an	ideal	language	for	scripAng	and	rapid	
applicaAon	development	in	many	areas	on	most	plaCorms.“	

	
„By	the	way,	the	language	is	named	aFer	the	BBC	show	“Monty	

Python’s	Flying	Circus”	and	has	nothing	to	do	with	repAles.“	
The	Python	Tutorial,	Sep.	2010	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 9

Why	another	language?	
Why	Python?	

l  InteracGve:	no	code/compile/test-cycle!	
l  A	lot	of	currently	needed	and	easy	accessible	
funcGonality	compared	with	tradiGonal	scripGng	
languages!	

l  Plaaorm	independent	and	freely	available!	
l  Large	user	base	and	good	documentaGon!	
l  Forces	compactness	and	readability	of	programs	by	
syntax!	

l  Some	say:	can	be	learned	in	10	minutes...	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 10

GeEng	in	touch	with	Python	(2.X)	

l  All	of	this	tutorial	will	use	the	interacGve	mode:	
l  Start	the	interpreter:	python
l  Or,	an	advanced	interpreter:	ipython

1.	Example:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

> python

Python 2.7 (#1, Feb 28 2010, 00:02:06)

Type "help", "copyright", "credits" or "license" for more information.

>>> the_world_is_flat = True

>>> if the_world_is_flat:

... print "Be careful not to fall off!"

...

Be careful not to fall off!

15.10.15 University of Hamburg, Dept. Informatics 11

Data	types	–	numbers	(1)	

l  Python	supports	integer,	floaGng	point	and	complex	
valued	numbers	by	default:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> 2+2

4

>>> # This is a comment

... 2+2

4

>>> # Integer division returns the floor:

... 7/3

2

>>> 7.0 / 2 # but this works...

3.5

>>> 1.0j * 1.0j

(-1+0j)

15.10.15 University of Hamburg, Dept. Informatics 12

Data	types	–	numbers	(2)	

l  Assignments	and	conversions:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> a=3.0+4.0j

>>> float(a)

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

TypeError: can't convert complex to float; use abs(z)

>>> a.real

3.0

>>> a.imag

4.0

>>> abs(a) # sqrt(a.real**2 + a.imag**2)

5.0

15.10.15 University of Hamburg, Dept. Informatics 13

Special	variables	

l  Example:	last	result	„_“	(only	in	interacGve	mode):	
	
	
	
	
	
l  Many	more	in	ipython!	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> tax = 12.5 / 100

>>> price = 100.50

>>> price * tax

12.5625

>>> price + _

113.0625

>>> round(_, 2)

113.06

15.10.15 University of Hamburg, Dept. Informatics 14

Data	types	–	strings	

l  Sequences	of	chars	(like	e.g.	in	C),	but	immutable!	
	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> word = 'Help' + 'A'

>>> word

'HelpA'

>>> '<' + word*5 + '>'

'<HelpAHelpAHelpAHelpAHelpA>'

>>> 'str' 'ing' # <- This is ok

'string'

>>> word[4]

'A'

>>> word[0:2]

'He'

>>> word[2:] # Everything except the first two characters

'lpA'

15.10.15 University of Hamburg, Dept. Informatics 15

Data	types	–	lists	

l  Lists	may	contain	different	types	of	entries	at	once!	
l  First	element	has	index:	0,	last	element:	length-1.	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> a = ['spam', 'eggs', 100, 1234]

>>> a

['spam', 'eggs', 100, 1234]

>>> a[0]

'spam'

>>> a[-2]

100

>>> a[1:-1]

['eggs', 100]

>>> a[:2] + ['bacon', 2*2]

['spam', 'eggs', 'bacon', 4]

15.10.15 University of Hamburg, Dept. Informatics 16

The	first	program	(1)	

l  CounGng	Fibonacci	series	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> # Fibonacci series:

... # the sum of two elements defines the next

... a, b = 0, 1

>>> while b < 10:

... print b

... a, b = b, a+b

...

1

1

2

3

5

8

15.10.15 University of Hamburg, Dept. Informatics 17

The	first	program	(2)	

l  CounGng	Fibonacci	series	(with	a	colon	afer	the	
print)	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> # Fibonacci series:

... # the sum of two elements defines the next

... a, b = 0, 1

>>> while b < 10:

... print b,

... a, b = b, a+b

...

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

15.10.15 University of Hamburg, Dept. Informatics 18

CondiPonals	–	if	

l  Divide	cases	in	if/then/else	manner:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> x = int(raw_input("Please enter an integer: "))

Please enter an integer: 42

>>> if x < 0:

... x = 0

... print 'Negative changed to zero'

... elif x == 0:

... print 'Zero'

... elif x == 1:

... print 'Single'

... else:

... print 'More'

...

More

15.10.15 University of Hamburg, Dept. Informatics 19

Control	flow	–	for	(1)	

l  Python‘s	for-loop:	

	

l  is	actually	a	for-each-loop!	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> # Measure the length of some strings:

... a = ['two', 'three', 'four']

>>> for x in a:

... print x, len(x)

...

two 3

three 5

four 4

15.10.15 University of Hamburg, Dept. Informatics 20

Control	flow	–	for	(2)	

l  What	about	a	counGng	for	loop?	
l  Quite	easy	to	get:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']

>>> for i in range(len(a)):

... print i, a[i]

...

0 Mary

1 had

2 a

3 little

4 lamb

15.10.15 University of Hamburg, Dept. Informatics 21

Defining	funcPons	(1)	

l  FuncGons	are	one	of	the	most	important	way	to	
abstract	from	problems	and	to	design	programs:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> def fib(n): # write Fibonacci series up to n

... """Print a Fibonacci series up to n."""

... a, b = 0, 1

... while a < n:

... print a,

... a, b = b, a+b

...

>>> # Now call the function we just defined:

... fib(2000)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

15.10.15 University of Hamburg, Dept. Informatics 22

Defining	funcPons	(2)	

l  FuncGons		are	(themselves)	just	Python	symbols!	
	
	
	
l  No	explicit	return	value	needed	(default:	“None”)	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> fib

<function fib at 10042ed0>

>>> f = fib

>>> f(100)

0 1 1 2 3 5 8 13 21 34 55 89

>>> fib(0)

>>> print fib(0)

None

15.10.15 University of Hamburg, Dept. Informatics 23

Defining	funcPons	(3)	

l  Fibonacci	series	with	a	list	of	numbers	as	return	
value:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> def fib2(n): # return Fibonacci series up to n

... """Return a list containing the Fibonacci series up to n."""

... result = []

... a, b = 0, 1

... while a < n:

... result.append(a) # see below

... a, b = b, a+b

... return result

...

>>> f100 = fib2(100) # call it

>>> f100 # write the result

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

15.10.15 University of Hamburg, Dept. Informatics 24

FuncPon	argument	definiPons	(1)	

l  Named	default	arguments:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):

 while True:

 ok = raw_input(prompt)

 if ok in ('y', 'ye', 'yes'):

 return True

 if ok in ('n', 'no', 'nop', 'nope'):

 return False

 retries = retries - 1

 if retries < 0:

 raise IOError('refuse user')

 print complaint

15.10.15 University of Hamburg, Dept. Informatics 25

FuncPon	argument	definiPons	(2)	

l  Calling	strategy	in	more	detail:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):

 print "-- This parrot wouldn't", action,

 print "if you put", voltage, "volts through it."

 print "-- Lovely plumage, the", type

 print "-- It's", state, "!"

parrot(1000)

parrot(action = 'VOOOOOM', voltage = 1000000)

parrot('a thousand', state = 'pushing up the daisies')

parrot('a million', 'bereft of life', 'jump')

15.10.15 University of Hamburg, Dept. Informatics 26

Modules	

l  If	you	have	saved	this	as	„fibo.py“:	
	
	
	
	
	
…you	have	already	wriPen	your	first	Python	module.	
				Call	it	using:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

Fibonacci numbers module

def fib(n): # return Fibonacci series up to n

 result = []

 a, b = 0, 1

 while b < n:

 result.append(b)

 a, b = b, a+b

 return result

>>> import fibo

>>> fibo.fib(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

15.10.15 University of Hamburg, Dept. Informatics 27

Outline	

l  IntroducGon	
l  PresenGng	the	Python	programming	language	
l  Image	processing	with	NumPy	and	SciPy	
l  VisualizaGon	with	matplotlib	and	the	spyder	IDE	
l  Summary	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 28

Image	processing	with		
NumPy	and	SciPy	

Unfortunately,	it	is	not	possible	to	give	a	complete	
introducGon	in	either	NumPy	or	SciPy.		

The	image	processing	introducGon	is	based	on:	
hPp://scipy-lectures.github.io/advanced/

image_processing	
	

More	material	regarding		NumPy	can	e.g.	be	found	at:	
hPp://numpy.scipy.org	

A	good	beginner‘s	tutorial	is	provided	at:	
hPp://www.scipy.org/TentaGve_NumPy_Tutorial	

	
	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 29

Images	as	efficient	arrays?!	

l  In	many	programming	environments,	like	e.g.	
MatLab,	images	are	represented	as	random	access	
arrays	

l  However,	Python‘s	built-in	array	is	ofen	neither	
flexible	nor	powerful	enough	for	image	processing	

l  Thus:	use	NumPy	arrays	for	image	representaGon.	
l  Idea	of	a	first	(very	basic)	workflow:	

l  Load	images	using	scipy.misc	(via	PIL)	
l  Process	the	images	using	NumPy		and	Scipy	
l  Save	the	images	using	scipy.misc	(via	PIL)	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 30

NumPy	at	a	glance	
•  „NumPy	is	the	fundamental	package	needed	for	scienAfic	

compuAng	with	Python.	It	contains	among	other	things:	
a	powerful	N-dimensional	array	object	[…]“	

•  NumPy	Homepage,	2010	

l  May	have	required	a	whole	course	on	its	own...	
l  SGll	growing	scienGfic	user	community	(SciPy/
NumPy)	

l  Reliable	algorithms	
l  Quite	fast,	compared	to	commercial	sofware	
implementaGons	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 31

Loading	and	saving	images		

l  Load	an	image	into	a	NumPy	array	(requires	PIL)	
	
	
l  Saving	a	NumPy	array	as	an	image	(requires	PIL)	
	
	
l  APenGon:	Usually	only	2d-	and	3d-arrays	with	
datatype„uint8“	(0	–	255)	can	be	saved	as	images.		
A	type	conversion	may	be	necessary	before	saving!	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> import numpy as np

>>> from scipy import misc

>>> img = misc.imread('lena.png‘)

...

>>> img = misc.imread('lena.png‘)

>>> misc.imsave('lena_copy.png‘, img)

15.10.15 University of Hamburg, Dept. Informatics 32

„Hello	Image“	

l  First	example:	Load,	“view”	and	save	an	image:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	

...

>>> img = misc.imread('lena.png‘) #or: img = misc.lena()

>>> img

array([[162, 162, 162, ..., 170, 155, 128],

 ...,

 [44, 44, 55, ..., 104, 105, 108]])

>>> misc.imsave(img, 'lena_copy.png‘)

15.10.15 University of Hamburg, Dept. Informatics 33

NumPy	image	representaPon	(1)	

l  Gray-value	images:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

...

>>> img

array([[162, 162, 162, ..., 170, 155, 128],

 [162, 162, 162, ..., 170, 155, 128],

 [162, 162, 162, ..., 170, 155, 128],

 ...,

 [43, 43, 50, ..., 104, 100, 98],

 [44, 44, 55, ..., 104, 105, 108],

 [44, 44, 55, ..., 104, 105, 108]])

15.10.15 University of Hamburg, Dept. Informatics 34

NumPy	image	representaPon	(2)	

l  RGB-value	images:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

...

>>> img_rgb

array([[[121, 112, 131], ..., [139, 144, 90]],
 [[89, 82, 100], ..., [146, 153, 99]],

 [[73, 66, 84], ..., [144, 153, 98]],

 ...,

 [[87, 106, 76], ..., [119, 158, 95]],

 [[85, 101, 72], ..., [120, 156, 94]],

 [[85, 101, 74], ..., [118, 154, 92]]], dtype=uint8)

15.10.15 University of Hamburg, Dept. Informatics 35

NumPy	slicing	and	index	tricks	
l  Extract	channels	using	slicing	

	

l  Extract	sub-images	using	index	ranges:	

l  AZenPon:	NumPy	ofen	creates	views	and	does	not	copy	your	
data,	when	using	index	tricks!	
à	Compare	to	Call-By-Reference	SemanGcs	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> img_rgb[:,:,0] # <-- red channel
>>> img_rgb[...,0] # same as above, fix inner-most dim. to 0

>>> img_rgb[...,1] # <-- green channel

>>> img_rgb[...,2] # <-- blue channel
>>> img_rgb[...,-1] # same as above, since blue is the last ch.

>>> img_rgb[100:200,100:200,0] # <-- red channel, size 100x100 px

>>> img[100:200,100:200] # <-- 100x100 px of gray-scale image

15.10.15 University of Hamburg, Dept. Informatics 36

Basic	Image	Processing	(1)	

l  Example:	Invert	an	image	(create	the	negaGve):	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

...
>>> img_invert = 255 - img

>>> img_rgb_invert = 255 – img_rgb # <-- works for rgb too!

15.10.15 University of Hamburg, Dept. Informatics 37

Basic	Image	Processing	(2)	

l  Example:	Threshold	an	image:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

...
>>> threshold = 100
>>> mask = img < threshold

>>> masked_img = img.copy()

>>> masked_img[mask] = 0

15.10.15 University of Hamburg, Dept. Informatics 38

Outline	

l  IntroducGon	
l  PresenGng	the	Python	programming	language	
l  Image	processing	with	NumPy	and	SciPy	
l  VisualizaGon	with	matplotlib	and	the	spyder	IDE	
l  Summary	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 39

VisualizaPon	with	matplotlib	

“matplotlib	is	a	python	2D	ploUng	library	which	
produces	publicaAon	quality	figures	in	a	variety	of	
hardcopy	formats	and	interacAve	environments	across	
plaCorms.	matplotlib	can	be	used	in	python	scripts,	the	
python	and	ipython	shell...“	

hPp://matplotlib.org,	October	2013	
	

This	introducGon	is	based	on	the	matplotlib	image	tutorial:	
hPp://matplotlib.org/users/image_tutorial.html	

	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 40

Showing	images	interacPvely	

•  Use	matplotlib	to	show	an	image	figure:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

>>> import matplotlib.pyplot as plt
>>> from scipy import misc
>>> img = misc.imread(‚stinkbug.png‘) # <-- stored as a gray rgb image
>>> lum_img = img[...,0]

>>> img_plot = plt.imshow(img)
>>> img_plot.show()
>>> img_lum_plot = plt.imshow(lum_img)
>>> img_lum_plot.show()
>>> img_lum_plot.set_cmap(gray) # also try hot, spectral etc.

15.10.15 University of Hamburg, Dept. Informatics 41

Show	with	enhanced	contrast	

•  Use	matplotlib	to	inspect	the	histogram:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

...
>>> plt.hist(lum_img.flatten(), 256, range=(0.0,1.0), fc='k', ec='k')
>>> plt.show()

>>> imgplot.set_clim(0.0,0.7)

15.10.15 University of Hamburg, Dept. Informatics 42

VisualizaPon	issue:	InterpolaPon	

•  When	zooming	in,	it	may	be	necessary	to	interpolate	
the	images	pixels.	

•  By	default,	bilinear	interpolaGon	is	used.	It	might	be	
bePer	to	use	„nearest	neighbor“	interpolaGon	to	see	
the	pixels:	

•  Or,	for	more	accuracy,	you	may	want	to	try	bicubic	
interpolaGon:	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

...
>>> img_plot.set_interpolation('nearest‘)

...
>>> img_plot.set_interpolation(‘bicubic‘)

15.10.15 University of Hamburg, Dept. Informatics 43

Working	with	the	spyder	IDE	
„spyder	(previously	known	as	Pydee)	is	a	powerful	interacAve	development	
environment	for	the	Python	language	with	advanced	ediAng,	interacAve	tesAng,	
debugging	and	introspecAon	features.[...]	
spyder	lets	you	easily	work	with	the	best	tools	of	the	Python	scienAfic	stack	in	a	simple	
yet	powerful	environment.[...]“	

hPp://code.google.com/p/spyderlib,	October	2013	
	

The	screenshots	of	this	introducGon	have	been	taken	from	the	spyder	homepage.	
	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 44

The	spyder	IDE	

15.10.15 University of Hamburg, Dept. Informatics 45

spyder	-	the	editor	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 46

spyder	-	the	console	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 47

spyder	-	the	variable	explorer	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 48

Outline	

l  IntroducGon	
l  PresenGng	the	Python	programming	language	
l  Image	processing	with	NumPy	and	SciPy	
l  VisualizaGon	with	matplotlib	and	the	spyder	IDE	
l  Summary	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 49

Summary	I	

l  The	Python	programming	language	
l  Readable,	meaningful	syntax	(remember	the	tabs!)	
l  Highly	funcGonal,	full	of	funcGonality	
l  Steep	learning	experience	and	fast	results	
l  Perfectly	pracGcable	for	interacGve	work	
l  Can	be	extended	easily	
l  Large	global	community	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 50

Summary	II	

l  NumPy	and	SciPy	
l  Efficient	Array	implementaGon	
l  Loading	and	saving	of	images	(transparently	via	PIL)	
l  Adds	(nature)	scienGfic	stuff	to	Python	
l  Contains	basic	image	processing	funcGonality	
l  Highly	acGve	and	widely	recommended	packages	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 51

Summary	III	

l  matplotlib	
l  Plots	everything...	
l  Works	well	with	NumPy	arrays	

l  spyder	
l  Nice	IDE	
l  Integrates	ScienGfic	work	flow	(a	bit	like	MatLab)	

l  Everything	is	there	and	freely	available:	Time	to	start	
with	the	exercises!	

IP1:	Lecture	2	–	Image	Processing	with	Python	
	
	

15.10.15 University of Hamburg, Dept. Informatics 52

